Common Developmental Pathway for Primitive Erythrocytes and Multipotent Hematopoietic Progenitors in Early Mouse Development
نویسندگان
چکیده
Development of the hematopoietic system proceeds in a multistep manner. Primitive erythrocytes are the first hematopoietic cells to be observed that were produced transiently in developing embryos. Multilineage lymphohematopoiesis occurs after the primitive erythropoiesis. However, the lineage relationship of cells that comprise embryonic hematopoietic system is not well characterized. To clarify this process, careful analyses of the embryonic cells that differentiate into these cell lineages are necessary. We identified the common precursors of primitive erythrocytes and multipotent hematopoietic cells in mouse embryonic stem cell cultures and mouse embryos. A subset defined as CD45(-)CD41(+)AA4.1(-) cells showed bipotential capability to produce primitive erythrocytes and lymphomyeloid cells at the single-cell level. The cell population was present in vivo before hematopoietic stem cells (HSCs) appeared. Our results show that primitive erythrocytes and lymphomyeloid cells are not completely separate cell lineages, and these precursors comprise the embryonic hematopoietic system before HSC emergence.
منابع مشابه
Discordant developmental waves of angioblasts and hemangioblasts in the early gastrulating mouse embryo.
Vasculogenesis and hematopoiesis are thought to arise in hemangioblasts, the common progenitors of cells in vessels and in blood. This scheme was challenged by kinetic analysis of vascular endothelial and hematopoietic progenitors in early gastrulating mouse embryos. The OP-9 co-culture system with a combination of cytokines permitted the detection of endothelial progenitors, as well as stroma-...
متن کاملFate mapping embryonic blood in zebrafish: multi- and unipotential lineages are segregated at gastrulation.
Vertebrate hematopoiesis first produces primitive (embryonic) lineages and ultimately generates the definitive (adult) blood. Whereas definitive hematopoiesis may produce many diverse blood types via a common multipotent progenitor, primitive hematopoiesis has been thought to produce only erythrocytes or macrophages via progenitors that are unipotent for single blood lineages. Using a variety o...
متن کاملProspective isolation of human clonogenic common myeloid progenitors.
The hierarchical development from hematopoietic stem cells to mature cells of the hematolymphoid system involves progressive loss of self-renewal capacity, proliferation ability, and lineage potentials. Here we show the prospective isolation of early developmental intermediates, the human clonogenic common myeloid progenitors and their downstream progeny, the granulocyte/macrophage and megakary...
متن کاملMultilineage hematopoietic progenitor activity generated autonomously in the mouse yolk sac: analysis using angiogenesis-defective embryos.
The capacity of the yolk sac to generate multilineage, adult-type hematopoiesis was investigated in vivo using vascular endothelial-cadherin deficient embryos. In these mutants, the yolk sac is not connected to the vasculature of the embryo and therefore all hematopoietic activity detected therein is intrinsic to the yolk sac and not derived from intraembryonic sources. At embryonic days 9.5 an...
متن کاملCD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis.
Development of the vertebrate blood lineages is complex, with multiple waves of hematopoietic precursors arising in different embryonic locations. Monopotent, or primitive, precursors first give rise to embryonic macrophages or erythrocytes. Multipotent, or definitive, precursors are subsequently generated to produce the adult hematopoietic lineages. In both the zebrafish and the mouse, the fir...
متن کامل